Zusammenhang zwischen nom. abh. & metr. unabh. Variable

Fragen und Diskussionen rund um die Statistik und deren Anwendung.
Antworten
Marcel08
Beiträge: 1
Registriert: 10.06.2016, 11:15

Zusammenhang zwischen nom. abh. & metr. unabh. Variable

Beitrag von Marcel08 »

Hallo Statistik-Freunde,

die vorliegende Aufgabe würde ich gerne in SPSS lösen und interpretieren:


Aufgabe

Es liegen vor:
- eine abhängige Variable mit nominalem Messniveau
- eine unabhängige Variable mit metrischem Messniveau

Es sollen nun in SPSS durchgeführt werden:
- Ein Chi-Quadrat-Test
- Eine Korrelationsanalyse
- Eine Regressionsanalyse (linear & mit Kurvenanpassung)


Fragen

1.) Kann aufgrund der stark unterschiedlichen Messniveaus der beiden Variablen überhaupt ein Chi-Quadrat-Test so ohne weiteres durchgeführt werden?

2.) Wie bzw. mit welchem Zusammenhangsmaß führe ich im vorliegenden Fall eine Korrelationsanalyse durch?

In der Literatur finde ich für solche Mischformen einerseits das sogenannte "Eta". $ Dieses Zusammenhangsmaß setzt offenbar jedoch eine nominale, unabhängige sowie eine metrische, abhängige Variable voraus. Im vorliegenden Fall ist es jedoch genau umgekehrt. Kann man dieses Maß dennoch verwenden?

Außerdem habe ich in der Literatur gelesen, dass bei zwei Variablen mit unterschiedlichem Messniveau diejenige Variable mit dem niedrigeren Messniveau das zu verwendende Messniveau bestimmt. Insofern betrachte ich also in Frage kommende Zusammenhangsmaße für das nominale Messniveau:

- Phi
- Cramers V
- Kontingenzkoeffizient

Was "Phi" angeht so ist dieses Maß wohl nur bei 2*2-Tabellen anwendbar. Da dies auf meine konkrete Aufgabe jedoch nicht zutrifft, muss ich auch dieses Maß ausschließen. Bezüglich der verbleibenden Maße finde ich nun keine weiteren "Selektionskriterien". Welches Maß muss nun verwendet werden und wie kann ich dann das resultierende Ergebnis deuten? Ich habe dazu gelesen, dass Zusammenhangsmaße des nominalen Messniveaus lediglich eine Aussage bezüglich der Stärke des Zusammenhangs liefern, nicht jedoch was die Richtung des Zusammenhangs angeht. Wie hoch muss der resultierende Wert sein, damit man überhaupt von einem statistischen Zusammenhang reden kann?



Vielen Dank im Voraus und viele Grüße,
Marcel
Anzeige:Statistik und SPSS: Die besten Bücher
Als Buch oder E-Book - Jetzt bestellen
spss datenanalyse
SPSS - Moderne Datenanalyse - Jetzt bestellen!
statistik datenanalyse
Statistik - Der Weg zur Datenanalyse - Jetzt bestellen!
Antworten