Hallo,
ich hab folgendes Problem...
ich möchte über Perdiode X den Umsatz eines Kunden mit dem Umsatz des selben Kundens in Periode Y vergleichen.
Periode X = 5 Jahre
Periode Y = 3 Jahre
Damit eine Vergleichbarkeit gewährleistet ist, muss ich also mit Mittelwerten arbeiten, um zu den Schluss zu kommen, ob der Kunde in Periode X mehr oder weniger Umsatz macht als in Periode Y.
Da das arithmetische Mittel ziemlich unresistent gegen Ausreißer sind, habe ich mir gedacht das ganze über den median zu lösen. Denn es kann ja sein der Kunde in Periode X in einem bestimmten jahr exorbitante Umsätze generiert hat und damit den eigentlich Trend, dass er sonst vermutlich durchschnittlich weniger als in der vorangegangen Periode generiert, verfälschen.
Ist denn dabei der Median die schlankeste Methode oder wie könnte man in dem Fall noch vorgehen?
Danke für eure Hilfe
Mittelwert oder Median
-
- Beiträge: 2391
- Registriert: 06.02.2011, 19:58
re
Das Problem besteht darin, das die Werte nicht i.i.d. veteilt sind.
http://de.wikipedia.org/wiki/Zufallsvar ... h_verteilt
Ansonsten würde der Mediantest hier einsetzbar sein. Die Werte werden monatlich erfasst, für sämtliche Werte wird der Median berechnet und geprüft, wie häufig ein Wert über oder unter dem Median liegt. Die stat. Entscheidung wird mittels Chi-Quadrat Test gefällt. Die ungleichen Zeitlängen wären dabei kaum ein Problem, da über die Randveteilungen die erwarteten Werte geschätzt werden.
Gruß
http://de.wikipedia.org/wiki/Median-Test
http://de.wikipedia.org/wiki/Zufallsvar ... h_verteilt
Ansonsten würde der Mediantest hier einsetzbar sein. Die Werte werden monatlich erfasst, für sämtliche Werte wird der Median berechnet und geprüft, wie häufig ein Wert über oder unter dem Median liegt. Die stat. Entscheidung wird mittels Chi-Quadrat Test gefällt. Die ungleichen Zeitlängen wären dabei kaum ein Problem, da über die Randveteilungen die erwarteten Werte geschätzt werden.
Gruß
http://de.wikipedia.org/wiki/Median-Test
drfg2008
-
- Beiträge: 2
- Registriert: 03.08.2011, 10:11
Vielen Dank für die ANtwort 
Das Problem dürfte allerdings nun darin bestehen, das es jeweils nur Jahrswerte gibt und keine monatlichen Umsätze, sodass ich hier an der Stelle nciht weiß wie man das dann mit dem Chi-Qudrat Test löst, wahrscheinlich ist dies dann so nicht möglich oder ?
Ich habe mal folgende Beispiel-Tabelle hinzugefügt:
http://img825.imageshack.us/img825/2480 ... nntcrk.jpg
Demzufolge würden in Periode X jeweils 2 Werte unterhalb und oberhalbdes Medians liegen und in Periode Y je 1 Wert.

Das Problem dürfte allerdings nun darin bestehen, das es jeweils nur Jahrswerte gibt und keine monatlichen Umsätze, sodass ich hier an der Stelle nciht weiß wie man das dann mit dem Chi-Qudrat Test löst, wahrscheinlich ist dies dann so nicht möglich oder ?
Ich habe mal folgende Beispiel-Tabelle hinzugefügt:
http://img825.imageshack.us/img825/2480 ... nntcrk.jpg
Demzufolge würden in Periode X jeweils 2 Werte unterhalb und oberhalbdes Medians liegen und in Periode Y je 1 Wert.
-
- Beiträge: 2391
- Registriert: 06.02.2011, 19:58
re
das sind zu wenig Werte. Der Mediantest -Split bei M=1.725- ergibt p=0,071 als Fishers exakter Test (der Chi-Quadrat Test ergibt p=0,028 ist hier allerdings nicht akzeptabel).
Ob eine solche Vorgehensweise bei Zeitreihen zulässig ist, müsste auch jemand beurteilen, der sich im Bereich Zeitreihenanalyse besser auskennt. Literatur wäre hier der Schlittgen [1]
Gruß
[1] http://www.amazon.de/Zeitreihenanalyse- ... 513&sr=8-1
Ob eine solche Vorgehensweise bei Zeitreihen zulässig ist, müsste auch jemand beurteilen, der sich im Bereich Zeitreihenanalyse besser auskennt. Literatur wäre hier der Schlittgen [1]
Gruß
[1] http://www.amazon.de/Zeitreihenanalyse- ... 513&sr=8-1
drfg2008