Hallo,
vorneweg: ich habe keine Ahnung von Statistik, schreibe aber an einer kriminologischen Arbeit, die das Thema streift. Hierzu benötige ich kurz Hilfe.
Ich habe Daten von einer Befragung. Diese Daten unterteilen sich in Indexberechnungen zu einer Gewaltbelastung der Befragten und Ergebnisvariablen über ihr Freizeitverhalten. Bivariat konnte ich einen hochsignifikanten Zusammenhang zwischen einzelnen Variablen und dem Indexwert feststellen. Nun möchte ich ein Erklärungsmodell erstellen/berechnen. Hierzu habe ich sämtliche Variablen (auch die, die in keinem signifikanten Zusammenhang zum Indexwert stehen) in eine schrittweise Regressionsberechnung mit SPSS eingebracht. Hieraus filterte mir SPSS einige Variablen heraus (R²=61%).
1. Wenn ich diese Variablen nun in einer Einschlussrechnung kontrollieren möchte, kommt ein deutlich geringeres R² heraus (ca. 45 %). Versteh ich nicht, da ich (laienhaft) dachte, dass das schrittweise Vorgehen eine Vielzahl an Einschlussberechnungen beinhaltet, so dass eigentlich das gleich Ergebnis rauskommen müsste. (?)
2. Wenn ich nun eine Variable, die bei der umfassenden schrittweisen Rechnung rausgefallen war, gegen eine Variable, die bei dieser bis zuletzt dabei war, austausche, erhalte ich - wie durch ein Wunder - ein größeres R² von 63%. Gleiches gilt für den Fall, dass ich weitere Variablen austausche. Auch da steigt uU. das berechnete R² bei gleichem Signifikanzniveau des Gesamtmodells.
Was mach ich falsch? Oder hat das seine Richtigkeit? Ich habe ein wenig das Gefühl, dass die Regressionsberechnung ein wenig Glückssache ist - welche Variable ich zufällig zum richtigen Zeitpunkt in die Rechnung einstelle. Gibt es eine Gepflogenheit in der Wissenschaft, dass nur die Werte mit einem höheren Betawert als 10 in einem Gesamtmodell dargestellt werden?
Ich bitte um dringende Hilfe...